CALCULUS

DERIVATIVE RULES

DEFINITION OF THE DERIVATIVE
The derivative of $f(x)$ with respect to \mathbf{x} is the function $f^{\prime}(x)$ and is defined as

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h) \quad f(x)}{h} \quad \text { or } \quad f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x) \quad f(a)}{x \quad a}
$$

Let c, b, and n be constants and f, g, functions of x.

$\frac{d}{d x}(c)=0$	$\frac{d}{d x}(x)=1$
$\frac{d}{d x}(c \cdot f)=c \cdot f^{\prime}$	$\frac{d}{d x}\left(a x^{n}\right)=n \cdot a x^{n \quad 1}$ (Power Rule)
$\frac{d}{d x}(f \pm g)=f^{\prime} \pm g^{\prime}$	$\frac{d}{d x}\left(c^{x}\right)=c^{x} \cdot \ln (c)$
$\frac{d}{d x}(f \cdot g)=f \cdot g^{\prime}+g \cdot f^{\prime}($ Product Rule $)$	$\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{g \cdot f^{\prime} f \cdot g^{\prime}}{g^{2}}($ Quotient Rule)
$\frac{d}{d x}(\ln (f))=\frac{1}{f} \cdot f^{\prime} \quad$ for $f \neq 0$	$\frac{d}{d x}\left(\log _{c}(f)\right)=\frac{1}{f \cdot \ln (c)} \cdot f^{\prime} \quad$ for $f \neq 0$
$\frac{d}{d x}\left(e^{f}\right)=e^{f} \cdot f^{\prime}$	$(g(g))=f^{\prime}(g) \cdot g^{\prime}$ (Chain Rule)

TRIGONOMETRIC DERIVATIVES

$\frac{d}{d x} \sin (x)=\cos (x) \cdot x^{\prime}$	$\frac{d}{d x} \cos (x)=\sin (x) \cdot x^{\prime}$
$\frac{d}{d x} \tan (x)=\sec ^{2}(x) \cdot x^{\prime}$	$\frac{d}{d x} \csc (x)=\csc (x) \cot (x) \cdot x^{\prime}$
$\frac{d}{d x} \sec (x)=\sec (x) \tan (x) \cdot x^{\prime}$	$\frac{d}{d x} \cot (x)=\csc ^{2}(x) \cdot x^{\prime}$
$\frac{d}{d x} \sin ^{1}(x)=\frac{1}{\sqrt{1 x^{2}}} \cdot x^{\prime}$	$\frac{d}{d x} \cos ^{1}(x)=\frac{1}{\sqrt{1 x^{2}}} \cdot x^{\prime}$
$\frac{d}{d x} \tan ^{1}(x)=\frac{1}{1+x^{2}} \cdot x^{\prime}$	Note : Here x^{\prime} was shown to demonstrate the chain rule. In these examples, $x^{\prime}=1$, as it is the derivative of x.

CALCULUS

DEFINITION OF THE DEFINITE INTEGRAL

If f is integrable on $[\mathrm{a}, \mathrm{b}]$, then the integral of $f(x)$ with respect to \mathbf{x} is the function $F(x)$ and is defined as

$$
F(x)=\int_{a}^{b} f(x) \cdot d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\quad \Delta x=\frac{b a}{n} \quad$ and $\quad x_{i}=a+i \Delta x$.

PERTINENT SUMS

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

$$
\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
$$

FUNDAMENTAL THEOREM OF CALCULUS

If $f(x)$ is continuous on $[\mathrm{a}, \mathrm{b}]$, then the integral of $f(x)$ with respect to \mathbf{x} from \mathbf{a} to \mathbf{b} is

$$
\int_{a}^{b} f(x) \cdot d x=F(b) \quad F(a)
$$

where $F(x)$ is an antiderivative of $f(x)$.

Let c, b, and n be constants and f, g, functions of x.

$\int c \cdot f(x) \cdot d x=c \int f(x) \cdot d x$	$\int[f(x) \pm g(x)] \cdot d x=\int f(x) \cdot d x \pm \int g(x) \cdot d x$
$\int d x=x+C$	$\int x^{n} \cdot d x=\frac{x^{n+1}}{n+1}+C$, for $n \neq 1$
$\int \frac{d x}{x}=\ln \|x\|+C$	$\int e^{x} \cdot d x=e^{x}+C$
$\int_{a}^{a} f(x) \cdot d x=0$	$\int_{a}^{b} f(x) \cdot d x=\int_{b}^{a} f(x) \cdot d x$
$\int \frac{1}{\sqrt{1 x^{2}}} \cdot d x=\arcsin (x)+C$	$\int \frac{1}{\sqrt{1 x^{2}}} \cdot d x=\arccos (x)+C$

Tel:

